Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells

Identifieur interne : 008F95 ( Main/Repository ); précédent : 008F94; suivant : 008F96

Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells

Auteurs : RBID : Pascal:07-0042707

Descripteurs français

English descriptors

Abstract

Solar cells based on polycrystalline thin-film Cu(In,Ga)Se2 materials have recently achieved a new level of performance with a certified efficiency of 19.5%. In this contribution, some physical characteristics of the absorber materials (and devices) leading to such performance are presented. From the absorber composition and the device quantum efficiency data, we found that these materials have an atomic bulk composition of 0.88 preferred orientation. Because of this key structural aspect found in our high-efficiency absorbers, we present a comparison for some physical characteristics of the absorber as related to typical preferred orientations observed in this material system, namely <112> and <220/204>. We find that <220/204>-oriented thin films are in general more homogeneous than <112>-oriented films in terms of their optoelectronic properties, and they lead to materials with a lower density of nonradiative recombination centers.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0042707

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Characterization of Cu(In,Ga)Se
<sub>2</sub>
materials used in record performance solar cells</title>
<author>
<name sortKey="Contreras, Miguel A" uniqKey="Contreras M">Miguel A. Contreras</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Renewable Energy Laboratory, 1617 Cole Blvd., MS 3211</s1>
<s2>Golden, CO 80401</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Romero, Manuel J" uniqKey="Romero M">Manuel J. Romero</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Renewable Energy Laboratory, 1617 Cole Blvd., MS 3211</s1>
<s2>Golden, CO 80401</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Noufi, R" uniqKey="Noufi R">R. Noufi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Renewable Energy Laboratory, 1617 Cole Blvd., MS 3211</s1>
<s2>Golden, CO 80401</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">07-0042707</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 07-0042707 INIST</idno>
<idno type="RBID">Pascal:07-0042707</idno>
<idno type="wicri:Area/Main/Corpus">008360</idno>
<idno type="wicri:Area/Main/Repository">008F95</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chalcopyrite</term>
<term>Copper Selenides</term>
<term>Emission spectrum</term>
<term>Gallium Selenides</term>
<term>Grain boundary</term>
<term>Indium Selenides</term>
<term>Non radiative recombination</term>
<term>Performance</term>
<term>Polycrystal</term>
<term>Preferred orientation</term>
<term>Quantum yield</term>
<term>Quaternary compound</term>
<term>Solar cell</term>
<term>Texture</term>
<term>Thin film</term>
<term>Transition metal</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Performance</term>
<term>Cellule solaire</term>
<term>Polycristal</term>
<term>Couche mince</term>
<term>Rendement quantique</term>
<term>Spectre émission</term>
<term>Chalcopyrite</term>
<term>Orientation préférentielle</term>
<term>Recombinaison non radiative</term>
<term>Texture</term>
<term>Joint grain</term>
<term>Métal transition</term>
<term>Cuivre Séléniure</term>
<term>Indium Séléniure</term>
<term>Gallium Séléniure</term>
<term>Composé quaternaire</term>
<term>8460J</term>
<term>Cu(In,Ga)Se2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Solar cells based on polycrystalline thin-film Cu(In,Ga)Se
<sub>2</sub>
materials have recently achieved a new level of performance with a certified efficiency of 19.5%. In this contribution, some physical characteristics of the absorber materials (and devices) leading to such performance are presented. From the absorber composition and the device quantum efficiency data, we found that these materials have an atomic bulk composition of 0.88 preferred orientation. Because of this key structural aspect found in our high-efficiency absorbers, we present a comparison for some physical characteristics of the absorber as related to typical preferred orientations observed in this material system, namely <112> and <220/204>. We find that <220/204>-oriented thin films are in general more homogeneous than <112>-oriented films in terms of their optoelectronic properties, and they lead to materials with a lower density of nonradiative recombination centers.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>511-12</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Characterization of Cu(In,Ga)Se
<sub>2</sub>
materials used in record performance solar cells</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of Symposium F on Thin Film and Nanostructured Materials for Photovoltaics, EMRS 2005 Conference, Strasbourg, France, May 31-June 3, 2005</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CONTRERAS (Miguel A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ROMERO (Manuel J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NOUFI (R.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SLAOUI (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>JÄGER-WALDAU (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>POORTSMANS (J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>BRABEC (C.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>National Renewable Energy Laboratory, 1617 Cole Blvd., MS 3211</s1>
<s2>Golden, CO 80401</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>InESS (Institut d'Electronique du Solide et des Systèmes) - CNRS, 23 rue du Loess</s1>
<s2>67037 Strasbourg</s2>
<s3>FRA</s3>
</fA15>
<fA18 i1="01" i2="1">
<s1>European Materials Resarch Society</s1>
<s2>Strasbourg</s2>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>51-54</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000115536260090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>10 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0042707</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Solar cells based on polycrystalline thin-film Cu(In,Ga)Se
<sub>2</sub>
materials have recently achieved a new level of performance with a certified efficiency of 19.5%. In this contribution, some physical characteristics of the absorber materials (and devices) leading to such performance are presented. From the absorber composition and the device quantum efficiency data, we found that these materials have an atomic bulk composition of 0.88 preferred orientation. Because of this key structural aspect found in our high-efficiency absorbers, we present a comparison for some physical characteristics of the absorber as related to typical preferred orientations observed in this material system, namely <112> and <220/204>. We find that <220/204>-oriented thin films are in general more homogeneous than <112>-oriented films in terms of their optoelectronic properties, and they lead to materials with a lower density of nonradiative recombination centers.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Performance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Performance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Rendimiento</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Polycristal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Polycrystal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Policristal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rendement quantique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Quantum yield</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Rendimiento quántico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Spectre émission</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Emission spectrum</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Espectro emisión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Chalcopyrite</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Chalcopyrite</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Calcopirita</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Orientation préférentielle</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Preferred orientation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Orientación preferencial</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Recombinaison non radiative</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Non radiative recombination</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Recombinación no radiativa</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Texture</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Texture</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Textura</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Joint grain</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Grain boundary</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Limite grano</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Métal transition</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Transition metal</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Metal transición</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cuivre Séléniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Copper Selenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cobre Seleniuro</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Indium Séléniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium Selenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indio Seleniuro</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Gallium Séléniure</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Gallium Selenides</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Galio Seleniuro</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>51</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>022</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Symposium F on Thin Film and Nanostructured Materials for Photovoltaics, EMRS 2005 Conference</s1>
<s3>Strasbourg FRA</s3>
<s4>2005-05-31</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 008F95 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 008F95 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:07-0042707
   |texte=   Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024